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Chapter One

NOISY RATIONAL EXPECTATIONS WITH STOCHASTIC
FUNDAMENTALS



20

1 Introduction

Models of trading behavior often use the assumption of rational expectationsto
describe how traders form beliefs about the value of assets. In this way, beliefsare
allowed to be formed endogenously. Rational expectationstrading models specify the
informationwhich is available to traders, and assume thisinformation is used rationally to
form beliefs. Information may bein theform of market signals as to thevalue of an asset,
and these signals may be drawn from a distribution known to each trader. In this situation,
a rational expectations trading model can be used to describethe formation of beliefs, and
the convergence or nonconvergence of beliefs as to the value of an asset. Rationa
expectation models are important not only to explain trading activities of market
participants, but also may be applied to the understanding of price formation in general.
For example, thesemodels may giveinsight into how an exchangerate might be related to
fundamental macroeconomic factors in an economy such as price indices.

In this chapter the model formalized by Grossman & Stiglitz (1980) and modified
by Blume, Easley and O'Hara (1994) is extended to allow the truevalue of the risky asset
to be determined by an exogenousfundamental. Thisfundamental follows a discrete-time
continuous-state random walk rather than remain constant throughout the trading sessions.
Agentsreceivesignals as to the value of the asset as in previous versions of this model,
and these signalsare alowedto convergeto the truevaueof theasset. The equilibriumis
a fulfilled expectations equilibriain the sense of Kreps (1977) in that when changesto the
fundamental are less than fully revealing, the expected changes in the value of the
fundamental influences the price of the risky asset.

Of primary interest is how anon-stationary component of the price process changes
the volume-signal precision relation. In thework of Blume, Easley and O'Hara, volume
was used to resolve the uncertainty of theuninformed traders as to thesignal received by
informed traders. It is shown that for their results to hold in a multi period setting, the

underlying fundamental in the model must follow a stochastic process.
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The analysiswill be presented in four remaining sections. Section 2 describes
Grossman & Stiglitz type generalized noisy rational expectation models with supply
uncertainty. In Section 3, the extensions of Blume, Easley and O'Hara are presented along
with their conclusions regarding the roleof volumein the price process. New results are
derived in Section 4 where the value of the risky asset follows a simple discrete-time
continuous-state process. The role of volume is then reinterpreted under these

specifications. Section 5 summarizes the conclusions of the chapter.

2 Noisy Rational Expectations Models

Grossman and Stiglitz (1980) demonstrate that when information is costly, markets
in equilibrium cannot be assumed to be perfectly arbitraged. Thedecision by traders to be
informed is specified as an endogenous variable, and in equilibrium it is shown that the
proportion of informed traders can be less than unity. This implies that some traders
choose not to beinformed. Traders choose not to beinformed either because information
iStoo costly or because prices convey information which might otherwise be purchased.

An unanswered question in this model is how information from the informed
traders is transmitted through the price system to the uninformed traders. When some
portion of traderschooseto beinformed, a conditionfor equilibriumis that theratio of the
expected utility of the informed and the uninformed tradersis unity. As more traders
choose to be informed, the price system is characterized as being more informative.
However, when information is costly, the marginal benefit of purchasing additiona
informationwill at some point fall short of its cost, and some traderswill always choose to
remain uninformed. Uninformed traders will depend on the price system alone to
determinetheir demands, and assume informed traders transmit costly informationto the
price system thereby allowing pricesto become informative.

Trading in thismodel is based on differencesin beliefs. Traders demand some
quantity of a risky asset based on rational expectations and utility maximization. In the
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extremes when either all traders choose to be informed or no traders choose to be
informed, markets becomethin and trading breaks down. This condition occurs when
either thereislittle noise in the system so there is no need to become informed, or when the
cost of information isvery low so all traders become informed.

The structure of the model is based on the rational expectations models of Radner
(1968), Green (1977), and Lucas (1972)." There aretwo assets, a safe asset and a risky
asset for which a budget constraint is defined along with initial wealth. The quantity of the

risky asset isuncertain. Thereturnon therisky assetis u=190 + €, where 6 isobservable

atacostand (6,g) areuncorrelatedindependent normal zero meanrandom variables. All
traders are identical initially and understand the distribution of returns based on prices.
Some choose to be informed where A is defined as the proportion informed. Each
informed trader receives the same signal. For an equilibrium proportion of informed
traders, A, a pricefunction, P)\(G, X) isdefined where 8 isthe costly signal, and x is

the random quantity supplied of the risky asset.

Traders are risk averse and have identical constant absolute risk aversion utility
functions. A negativeexponential utility function is used, V(w) = - € (@W), where w is
wealthand a isthemeasureof risk aversion. Informed traders form demand for therisky

asset by maximizing their utility given the current price and signal. With the specified form

of theutility function, demand can be solved as, X(P, 8) =(6 - R P) /ao€2, where P is

the equilibriumprice, R is thereturn on the safe asset, and 082 is the variance of the

return on therisky asset u given the noisy signal.

Uninformed traders observe price but not the signal observed by the informed
traders. Itisassumed that after repeated observation, uninformed traderslearn therelation
between the observed price and the return on the risky asset, and form expectations

rationally. The demand of the uninformed is described as a function of the learned

! For adiscussion of the Green-L ucas theorem see e.g. Laffont (1993).



23
equilibrium price function and observed price. The price function assumed for the
uninformed traders, P*(¢), is based on the unobserved factors(0, x), and isformed such

that u and P* arejointly normally distributed. That is, uninformed traders form price
expectationswhich relate statistically to thereturn of therisky asset. Theexistenceof such
aprice function is proven in Grossman & Stiglitz.

Uninformed tradersuse this price function along with the currently observed price

to formulate their demand for the risky asset as
X(P, P*) = (E[u*| P] - RP) / (@V[u*| P]), 1

where E[¢] is the mathematical conditional expectations operator, and V[e] is the

conditional variance. With the demand of both the informed and uninformed traders, an

equilibrium demand system is defined. An equilibrium price system, P)\(e, X), is a

function of (B, x) such that for (8, x), the sum of the demand of the informed and

uninformed traders equal s supply.

For thismodel to be useful, the equilibrium price system must have a specific form.
The equilibrium price system is characterized as a linear functionin (8, x) of a particular

form of noisy signal defined as

$)(8,%) =0 -(@c?/ ) (x - E[x |x*]), (2)

with A > 0. Thefirst term on theright hand side is the noisy signal, and the the second

term on the right hand side represents noise due to supply uncertainty. With A =0, thereis

no signal and only the current demand is available. Show thisas
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5,(8, X) = x. (©)

Grossman & Stiglitz provethat equilibriumpriceisin factalinear functionof sy and that

prices convey information about 8. Itis shown that S\ isa mean-preserving spread of

8, and therefore the equilibrium price system can be characterized as

Py (8.X) =A1+Ags). (4)

Information (8) is transmitted from the informed traders to the uninformed traders by

allowing the uninformed to observe P and learn P*. Since S\ IS a mean-presarving

spread of 0, the expected value and variances can be written as

Els)* |6] =6
and (5)

Vis,* 101 = (@ o) 1A% Vx']

Theconditional variance of s)\* measures how well information from the informed trader

istransferred to the uninformed. It dependson the overall noise in the system, the supply
noise, thenoisein thesignal, the coefficient of risk aversion, and isinversely relatedto the
proportion of informedtraders. Asmoretraderschoose to be informed, more information
istransferred to the uninformed traders.

Since the number of informed traders is an endogenous variable, equilibrium must
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also occur in the information market: The number of traderswho wish to becomeinformed
must be determined. Information market equilibriumis reached when the ratio of the
expected utility of the informed and uninformed tradersis unity. An overall equilibrium
includes an equilibrium price system and equilibriumin the information market. This
equilibrium depends on the cost of information, the quality of the informed traders
information, and the coefficient of risk aversion.

Comparative statics show that as information quality increases, the price system
becomes more informative. A decreasein the cost of informationor a decreasein risk
aversion increases the informativeness of the price system. All other changes in
parameters other than these just mentioned do not change the informativenessof the price
system but only change the proportion of traders who choose to become informed. For
example, an increase in supply noise will first decrease the informativeness of the price
system but at the same time more traders will choose to be informed which increasesthe
informativeness of the pricesystem. These effectswill cancel leaving theinformativeness
of the price system unchanged. Finally, as signals becomes more informative, the
informativeness of the price system increases. Additional uninformed traderswill choose
to purchasesignals, and a new equilibrium proportion of informed traders will be reached
where the expected utility of the informed and uninformed tradersis balanced.

The Grossman & Stiglitz framework is an important beginning to an understanding
trading in situations of asymmetric information. Soon after the model introduced,
however, the assumption of trade with common knowledge was challenged. Milgrom &
Stokey (1982) proved that in a rational expectations framework with common knowledge,
traders who begin with a Pareto optimal allocation will never agreeto trade when new
informationis availableto some traders.> Recall that in the Grossman & Stiglitz model
tradeis based on differencesin belief. All informed traders purchase the same signal while
the uninformed receive no new information other than the current market price. Following
the argument of Milgrom & Stokey, the uninformed traders as a group would refuse to

tradewith the group of informed traderswhenever it is known that the informed tradersdo

> Seedso Sargent (1993) for discussion of Tirol€'s (1982) version of the no-trade theorem along with
Sargent's aternative approach which employs boundedly rational agents.
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in fact have better information.

The no-trade scenariois difficult to reconcile with empirical observations of liquid
markets. Hellwig (1980) and Diamond & Verrecchia(1981) argue that prices are at best
only partially revealing, and therefore there are always incentivesto collect costly
information. If thisistrue thenthe fully revealing no-trade situation will not occur. This
is accomplished by making information dispersed rather than uniform across tradersas in
the Grossman & Stiglitz model. In small finiteeconomies, when information is dispersed
the individual demands of the informed trader cannot reveal all availableinformation. In
very largeeconomies, individual traderswith dispersed information cannot effect prices if
their size issmall relative to the size of the market. Prices however can takeon the role of
aggregators of the dispersed information of informed traders. The idea that prices
aggregateinformation can be traced back to Hayek's (1945) essay, "The use of knowledge
in society"”.

Diamond & Verrecchia(1981) also argue that noise in rational expectationsmodels
in the form of supply uncertainty can prevent prices from being fully revealing, while if
costly information can be purchased to resolve this uncertainty then as in the Grossman &
Stiglitzmodel, a no-trade situation can occur. However, Diamond & V errecchiasuggest
that the no-trade situation does not occur when information is dispersed. That is, when
information aggregated across traders is more valuablethan the information of a single
trader. This implies that private information is always valuable, and aggregated
information is more informative than information belonging to any individual trader.

The model of Diamond & Verrecchiamay be described as a Bayesian statistical
decisionproblem. Traderslearnthe behavior of pricesand thereturnon a risky asset, and
form demands for therisky asset conditional on their endowment of the risky asset, their
private information, and the current price for the risky asset. Traders have identica
preferences given by identical negative exponential utility functions, identical priors as to
the return of the risky asset, and observe costlessly information about the return of the
risky asset. Information isof the same precisionacross all tradersyet is dispersed. That

is, information signals aredrawn from the samedistribution for all traderswhere the mean
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of thedistributionisthe common prior for thereturn on therisky asset, and the variance of
the distribution is constant.

Thereturn on therisky asset is Normally distributed, u ~ N(yq, 1/hg), whereyg is
thecommon prior, and h istheprecision or theinverse of thevariance of thedistribution.
The return on the risky asset along with the signals available to traders, (u, y), form a

jointly bivariate Normal distribution with mean (y,, Y) and covariance matrix®

hO (6)

where hy is defined as above and n is the number of draws from the given distribution.
Noise is introduced as aggregate supply uncertainty. Eachtrader's endowment of
the risky asset is an independent draw from a Normal distribution with zero mean and

constant finite variance. The readizationof a draw for an individual trader, t, is given by

% =X;. Thesum of al individua endowmentsis X =2 % wherethe sum is taken

over afinitenumber, T, of traders. Eachtrader then uses theinformation these individua
endowments, the costless signal, and available price to form demand equations. The
demand equationsfor each trader can then be written as Di(x;, Y4, P) for the risky asset,
and By(Xy, Yy, P) for the safe asset.

An equilibriumis determined by first conjecturing a price function then showing
that the form of the conjectured price function is correct, markets clear, and individua
budget constraints are satisfied. Only an outline of the determination of the equilibrium
will be given here. The goal is to determinethe conditional expectation and conditional

variance of therisky asset. Define these as

® For the covariance matrix to have this form where the covariance termis equal to the variance of u,
the correlation coefficient for u and y must be equal to unity. Thisimpliesalinear relationship between
the variablessuch that P(u=a+ by) =1, for some constants a and b. For a proof, see Rice (1987) p.
126-127.
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He=E[u|x,y, Pl (7)
and
0% = V[u|x,y, Pl. (8)

Conjecture the price function to be

P=ay, +@/T) 3 9 - (y/ DX ©

wherea, 3, andy arecoefficientsto be determined. Comparedto the Grossman & Stiglitz

price function, this equation is again linear in the available information while per capita

supply appears now as an additional term with a unique coefficient.

By design, the expression, P — (a + B) Y., is normally distributed with zero
mean and with constant precision, H. The expressions for the condition mean and
variance of the risky asset can then be determined by defining a vector,

Z = [u’ )N(! Xty yt’ rD —(G + B) yO] (10)
which has afive-variate Normal distribution. This vector can be partitioned as

z,* =[0, X] (1)

and
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z;* =[%, §u P —(a +B)yo] . (12

Given that mean and covariance matrix of the multivariateNormal vector Z isknown, the

conditional distribution vector of zq* given zo* can be then be found by matrix algebra.

Once y; and ozt are determined, they may be substituted into the demand equation

Dy = (- P) / 0% (13)

and the market clearing condition may be applied

T T
X =21Dt :(1/o$)tzzlut -TP (14)

t=
and price may be solved for as

P=@/M| X -xo. (15)

t=1

This expression for P in terms of known variablesis the of the same form as was
conjectured, and therefore yields the equilibrium price and the solution to the model.

The model of Diamond & Verrecchiadiffers from the Grossman & Stiglitz model in
that information here is dispersed rather than asymmetric. In the Grossman & Stiglitz
model, prices can fully reveal the information of the informed tradersto the uninformed
traders. By contrast, when trader behavior is modeled as a Bayesian statistical problem
where informationis dispersed, prices cannot reveal all aggregate information except in

limiting cases. As will be seen, limiting cases are incorporated into studies by Brown &
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Jennings (1989), and again by Blume, Easley, and O'Hara (1994).

The Diamond & Verrecchia (1981) model is extended to two periods in Brown &
Jennings (1989) where it is shown that past aswell as current pricesare used by tradersto
resolve the underlying uncertainty of themodel. Thisissimilar to Hellwig (1982), where
past pricesare used because current pricesare not yet availablewhen demandsare formed.
In Brown & Jennings, uncertainty is againin the form of aggregate supply uncertainty.
Tradersreceive dispersed signals as to the payoff of arisky asset. The demand for this
asset in each period is based again on the maximizationof a negative exponential utility
function conditional on information availableto the traders. The overall payoff to each

trader after the second period is given by

No+ di 1 (P2 - Pl) + di 2 (u- P2) (16)

where ng is the quantity of the riskless, non-dividend paying asset held after two periods,
d; 1 and d; » arethe quantities demanded by trader, i, in period 1 and 2 respectively. Pq
and P, are the equilibrium prices for each period, and u isthe return on of the risky asset.

A rational expectationsequilibrium is specified as a pair of demand functions (d4,
do) for each trader, and apair of equilibrium prices(Pq, Pp) such that four conditionsare
satisfied: 1) Prices are functions of availableinformation through their dependence on
demands and supplies. 2) For al possible information sets available to traders, conjectures
asto the pricefunction areconsistent. 3) Eachtrader's strategy is feasibleand optimal. 4)
Markets clear in that

X1 =dg

and a7

X1+ Xo=do,
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where x; are the positive or negative supply increments provided exogenously in each
period.

The costless private signals observed by each individual at time, t, are

Yit=ut &t (18)

where theerror term, g; { is Normally distributed with zero mean and finite variance. The

joint expectation of the error term and the return conditional on availableinformation is
zero.

Likethe model of Diamond & Verrecchia, this model depends always on limiting
casesfor itssolution. When the Strong Law of LargeNumbersis applied to the sum of dl
individual trader's signal over the total number of traders, an average signal is found.
Then, due to the character of the error term on individual signals, this average signal
converges to the value of thereturn on therisky asset. The application of Strong Law of

Large Numbersfor thissituation is

pr| limit >y /1] =ul=1. (29

I — 00j=1

where the number of traders, |, is allowed to grow to positive infinity.

A two-period model allows traders to engage in strategic behavior across periods.
Brown & Jennings refer to hedging demand the purchase (sale) of unitsof therisky asset
in one period for sale (purchase) in the following period without realizing the payoff from
the asset. For this type of activity, traders respond to how asset supplies vary from
period-to-period. In each period, asset supply incrementsare Normally distributed with
zeromean and finitevariance. Across periods, asset supplies may be correlated where the
absolute value of the coefficient of correlation is less than unity and constant through time.

The conjectured prices in each period are interdependent, and are based on the
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supply of the risky asset and the payoff of the risky asset. Pricesin each period are
defined as

P1=01YotBru-v1x1

and (20)

Po=0d2Yg+ Bou-YpXq-32Xo.

Conjectured prices areidentical acrosstraders and linear functionsof Normally distributed
variables.

A rational expectations equilibriumis shown to exist by maximizing individua
traders demandsand applying market clearing conditions, then equating coefficients with
the set of simultaneous price equations given above. Existence canonly be demonstrated
for limiting cases. However, if hedging demand is eliminated, the equilibrium can be more
precisely characterized. Brown & Jennings prove that without hedging demand and
subject to other parametricrestrictions, it is useful in the second period to know the first
period price. Knowing previous prices is valuable because it resolves some of the
uncertainty in the current period, especially with respect to the signals of the other traders
in themarket. Thisisdue to thefact that supply incrementsare cumulativeand correlated
over time, and prices in each period are less than fully revealing.

A different approach is seen in the two trading model s described by Romer (1993)
where trading activity in itself causes price movements. Similar to the previous models,
the Romer models rely on less than fully revealing prices. However, whereas the
Diamond & Verrecchiaand Brown & Jennings models employed an information structure
where information was dispersed and symmetric across traders, Romer models
information as asymmetric acrosstraders. A matrix of typical information structures used

in rational expectation trading modelsisgiven as Figurel.
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In thefirst Romer model, information is heterogeneous across traderswhere some
traders receive better information than others. Traders initially misweight their own
information relative to the market pricedue to uncertainty. Tradingwhich Romer refersto
as "market developments' eventually correct these misweightings as information about
other's uncertainty is revealed. Hellwig (1980) describes a similar situation athough
without the self-correcting mechanism employed by Romer.

In Romer's second model, informationis widely dispersed and individuals have
little incentive to use their own information. Trading costs change the decision problem for
tradersand generally inhibit trading. Thetiming of tradesby insidersinfluence pricesand
affect asset demands for all traders. With a largenumber of tradersin the market, Romer
shows the resulting price movements to be substantial.

These two models are unique in that they employ an asymmetric information
structure as was seen in the original Grossman & Stiglitz (1980) model along with
dispersed information seen in models following Grossman & Stiglitz. The asymmetry
structureresultsin one group of tradersbeing aways better informed than the other traders
inthe market. Instead of relyingon limiting casesfor asolutionto the model as was done
in models following Grossman & Stiglitz, however, Romer has each group of traders
conditioning their demands not only on price but also on the actions of other group of
traders. This makes the model very difficult to solve unless behavior converges to a
strategic equilibrium such as a Nash solution. No such solution is proposed and the
models cannot be solved in closed form. Romer uses a multiple dimensional grid search
technique to study the behavior of the model.

Until strategic equilibria solutions are devel oped, limiting solutions to noisy rational
expectation models appear to be themost useful for studying trading behavior. The vaue
of limiting solutions to models of dispersed information has been demonstrated by
Diamond & Verrecchia (1980), and the two-period extension by Brown & Jennings
(1989). In addition, Romer (1993) demonstrates that even with dispersed information,
allowing tradersto be asymmetrically informed may also explain some types of dynamic

price movements. Based on this past research, the most promising new models might
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incorporate an information structure where traders are asymmetrically informed and
possess dispersed information. At present these models must then rely on limiting cases
for their solution with an eye towards strategic behavior. The next section presents the
model by Blume, Easley and O'Hara (1994) which is the basis for the extensions of the
current paper.

Blume, Easley and O'Hara (1994) (hereafter BEO) begin with the assumption that
prices are not fully revealing, and some form of technical analysis may be useful to traders.
They refer to the model of Brown & Jenningsin thisregard. The form of technica
analysisthey study is trading volume. The statistical propertiesof volumein relationto
price have been surveyed by Karpoff (1987), and more recently by Gallant, Rossi, and
Tauchen (1991). Volumehas been found to be correlated with the absolute value of price
changes. BEO attempt to demonstrate how volume may in addition be related to the
underlying value of an asset and the dynamic behavior of price movements.”

In rational expectationsmodels of trading, noise is often in the form of supply
uncertainty. BEO argue that allowing traders to observe volume removes the uncertainty in
traditional rational expectation models, and resultsin equilibriain which prices are fully
revealing. Thisleadsto a zero trade result first demonstrated by Grossman & Stiglitz
(1980). An additional conditionfor thisresult is that volume must be defined as the net
demand of profit maximizing risk aversetraders. Observed volume may not correspond to
this definitionif liquidity trading takes place by traders who profit from slowly adjusting
prices, or if a subset of traders have inelastic demands for the asset due to exogenous
constraints. In the BEO model, volume satisfies this additional condition.

The BEO model presented in the next section differs from previous models in that
the supply of therisky asset is fixed, and uncertainty is present only in the value of the
information signals given to traders. Informationin this model can be characterized as
dispersed and asymmetric acrosstraders. The hypothesized role for volume s to resolve
the uncertainty due to the asymmetry in the information structure. The model attemptsto

show that the sequence of past volume and price statistics are informative and welfare

*  Kreps (1977) also considers the conditions under which traders possess private quantity signals and
discusses conditions under which these signals are informative.
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improving. In equilibrium, the the results of the model correspond to the observed
empirical relation between volume and the absolute value of price changes. The model aso
allows predictionsto be made as to the effect of the quality of informationon pricesand

volume changes.

3 A two-period rational expectations model with asymmetric signal

quality

3.1  Description of the model

BEO (1994) employ a finite number of agents, i = {1 ... I}, having identica
negative exponential utility functions, and coefficientsof risk aversion equal to unity.
Agents are endowed with n units of a safe asset that pays a liquidating dividend of one,
and zero unitsof a risky asset which pays an uncertain liquidating dividend known only &
theend of theperiod. All tradetakesplaceamong the agentswho submit their demandsto
aWalrasian auctioneer. Since no agents begin with any quantity of the risky asset, it might
be assumed that agents submit positive as well as negative claimsfor the risky asset.
Marketsclear when net claimsare zero, and only the payoff of therisky asset istransferred
across agents. End of period wealthis computed as the sum of the safe asset held, and the
product of the number of risky assets held and payoff of the risky asset. The are no
conditions which prevent negative wealth although some such conditions might be
imposed |ater.

The risky asset's eventual value is Normally distributed. The parametersof the
distribution are known to all agents, and account for the agent's priorsfor therisky asset's

payoff. The value of the risky asset is given by

W~NW,, Upg) (21)
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The true value of the risky asset is not known to agents until after trading takes place.
Agents, however, do receivesignalsat the beginning of each trading period which estimate
the true value of the risky asset. There are two types of signals drawn from a Normal
distribution which differ only in their precision, where precision is defined as theinverse
of the variance. The subset of traders receiving the better quality signal are referredto as
the informed traders. The remaining traders receive the lesser quality signals and are
referred to as uninformed traders. In addition, each signal contains a common Normal
mean zero error term.

Traders receivenew signalsat the start of eachtrading period. The signalsfor the

informed and uninformed traders are as follows

Yit=Wot Wty (22)

where ;¢ isthesignal for traderi inperiodt, W isthemeanvauefor thedistribution
in which the true value is drawn, w; is the common error term defined by w;  ~ N(O,

1/py). Theidiosyncraticerror term, g ¢ is defined as g + ~ N(0O, 1/p4) for the informed

traders, and g  ~ N(O, 1/p,) for theuninformed traders. While each group of tradersis

subject to the variance of thecommonerror term, theinformed tradersby definition receive
signals which have idiosyncratic error terms with less variance with respect to the the
uninformed traders. It can be said that informed traders have more precise signals.
Alternatively, the informed traders' signals could be said to have greater information
content.

The precision of the uninformed traders remains constant over time while the
precision of theinformedtraderssignal is a randomvariable. Although not specifiedin the

BEO paper, this variable may be thought of as being drawn from a uniform distribution
definedon [po, 1]. Informed traders know the precision of their signal, and the precision

of the signal of the uninformed traders. Uninformed traders know the precision of their
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own signal but not that of the informed traders. The precision of the common error is
common knowledge for both groups of traders, and is constant across trading periods.
The overall precision of each group's signal may be defined as the reciprocal of

sum of the common and group specific variances. For group 1 and 2,

s = ppwftpi i =12 (23)
W t

3.2  Formulation of the Bayesian statistical problem

Similar to Diamond & Verrecchia (1981), BEO present a Bayesian statistica
problem whichis solved for each group of traders. The return on the risky asset remains
constant across periods yet at the start of each period, all traders receivea signal as to its
value. Itisassumed that Bayesian updating takes place over time to improve the estimation
of the value of the risky asset. The choice of distributions from which the signals are
drawn makes this a standard problem. The form of each group's set of signalsis in the
form of thesum of aconstant and two Normal mean zero random variables. Accordingto
standard statistical theory, this sum can again be considered a draw from a Normal
distribution, and each new signal received at the beginning of a trading period can be
considered an additional sample from a Normal distribution. If the variance of each
period's signal is known, then the family of Normal distributions is then a conjugate
family of prior distributionsfor samplesfrom aNormal distribution. (see, e.g., DeGroot,
1989).

As signalsare correlated with thetrue value of the risky asset, recelving signalsis
useful in estimating the value of therisky asset. The condition expectation and variance

may be defined where each is conditional on the recelvedsignal. The posterior of P after

each new signal may be represented as the conditional expectation of W where the
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expectation istaken over all possible valuesof W. Thismay be seen as

_ Polo + pivi i =12

E: : 5 24
wivd = =50, (24)

and with the conditional varianceis given by
VIwlyl = g1 =12, (25)

Py + Po

In addition, each signal can be considered as a draw from a Normal distribution
where the mean value is the true value itself and the variance is the updated precision for

each type of trader in each period. Thismay be shown as
yi~NW, UpS) =12 (26)

Since distribution of w; is known and common to both typesof traders, define the
true value of the risky asset plus the noise due to the common error as the "noisy

fundamental”. Thismay be written as
Gt =y + Wi. (27)

Traders never see thetrue redlizationof the state because of this noise term, w;,
which is common across both types of traders. Conditional on this noiseterm, however,

the distribution of signalsfor each group can be rewritten as
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yllwe ~N@g, Uply =12, (28)

which indicates that signals are informative as to the noisy fundamental.

While the common error is always present, the idiosyncratic error may be
eliminated within a period if the number of tradersis very large. This occurs because the
idiosyncratic errors across traders are Normal random variables with zero mean and are
therefore uncorrelated. After repeated draws theseerrors will cancel out. More formally,
the Strong Law of Large Numbers dictates that a sample mean will always converge in
probability of the mean of the distribution from which the sample was taken (see, e.g.,

DeGroot, 1970). Using the Strong Law of Large Numbers this can be expressed as

limit _ _
Pri, o Yn=06=1 (29
where
o =% 1
Yn —izzlﬁy (30)

The convergence of available information to the value of the return on the risky
asset is an integral part of limiting solutions to rational expectationsmodels. Brown &
Jennings (1989) use the same techniquein the solution to their model. In section 4,
however, it will be seen that while signals may convergeto avaluefor the risky asset after
sufficient signals have been made available, the asset itself may have already moved away

from this value.

3.3  Therationa expectations solution
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There are several conditions which must be satisfied for a rational expectations
solutionto be shown. First, apricefunction is conjectured based on information available
to traders. Second, traders maximizea utility function subject to a wealth constraint.
Third, it is shown that trade is feasible for all traders, markets clear, and the the
conjectured price function is consistent with the result of each trader's utility maximization.

It is assumed traders conjecture a pricefunction for the risky asset which includes
their prior for the realization of the risky asset, the average signal received during the
period, and aterm representing the supply of theasset. The conjectured price functionfor

informed and uninformed tradersin thefirst period is

p=ao +BY: —yX (31)

where a,[3, and y are estimated parameters.

In the two-period model of Brown & Jennings (1989), two types of trading are
defined: hedging demand referred to the purchase (sale) of units of the risky asset in one
period for sale (purchase) in a later period while speculative demand depended solely on
the eventual return on therisky asset. Tradersaresaid to be myopicif they engageonly in
speculative demand where it is assumed that utility is maximized on a period-by-period
basis rather than over several periods. The assumption of myopic traders greatly
simplifiedtheanalysis. Brown & Jenningswere ableto find closed form solutionsto their
model only under this assumption of myopic traders.

Demand by myopic traders maximizing a negativeexponential utility functionis of
thesameform asin previous rational expectations models. The expected valueof therisky
asset conditional on availableinformation and the conditional variance are defined above.
The price used in the demand equationis the equilibrium pricein the current period. The

choice of the form of the utility function allows demand to be defined as



41

_Eylyl -p
N IS 2

The value of the expected value and variance from (24) and (25) can then be substituted
into (32),

_ (yp?)llJo +(J7/po)ylt _(37/[30 +}/pf)p

Ot 33
(o) 3

and smplifying yields
& = po(Wo-P)+pSl-p)  i=12 (34)

Imposing a market clearing condition requiresthat net demand by all traderssum to
zero. By summing equation (34) over all traders and setting net demand to zero, the
equilibrium price canbe found. A full derivationis providedin the Appendix. It will be
important for what follows that while net demand is set equal to zero, while the absolute
value of demand need not be zero.

The proportion of informed and uninformed traders is an exogenous variable,
define p as the proportion of informed traders. The equilibrium price can then be solved

for as a solution to the Bayesian statistical problem for both types of traderswhere the
signalsof theinformed and uninformed traders are weighted by their respective precisions.

This may be shown as
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_ Pollo + Y + (1-pPEYE

& Po + ppt + (L—p)ps®

(35

The expression for the equilibrium price would be of the same form as the
conjectured price functionif it contained alinear per capita supply term. 1f we were only
interested in what BEO describe as the Walrasian price and demand function of thetraders,
and supply of therisky asset is in the form of Normal mean zero supply increments, the
coefficient on thethe per capita supply term could be assumed to be zero. BEO, however,
state that their model has an exogenousfixed supply of the risky asset, tradersbegin with
zero units of the risky asset, and all trading is among the agents of the model. The
assumption of an exogenousfixed supply rather than supply in termsof zero mean supply
increments greatly simplifiesthe results of the model since the final form of the price
function excludes any supply term. Since the goal of the model is to highlight the
equilibrium volume effects, fixing supply eliminates confounding volume-supply
interactions. Rational expectationsmodels where the form of the distribution of supply
increments does affect current prices are described by Walsh (1983).

The solution to each trader's Bayesian decision problem gives an expression for
trader's demandsbut is not sufficient to solvethe model. Asin previouswork, alimiting
approach is appliedto solve for the equilibriumvalues of the model. In thelimit as the
number of signalsis allowed to grow very large, the average signal for both types of
traders are assumed to each converge to the true value of the return on therisky asset.
Since each trader is assigned a unique signal, allowing a large numbers of tradersin the
economy will produce a large number of signals. By application of the Strong Law of

Large Numbers the equilibrium price can be expressed as
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_ Polo + (up + (1-p)pt)B:
Po + WPy + (1-p)p?”

P (36)

This expression for price can now be used to study the characteristicsof the equilibrium
under various conditions, and specifications for the degreeof asymmetry between thetwo

types of traders.

3.4  Characteristics of the equilibrium

Given the information available to the informed traders, knowing the equilibrium
price allows them to determinethe value of the noisy fundamental by inverting the price
function. Thisis not possiblefor the uninformed traders because one additional variableis
unknown, the precision of the signals of the informed traders. Prices are thereforefully
revealing for the informed traders but only partialy revealing to the uninformed traders.

Current theory suggests that in situations where prices are only partially revealing,
traders often look to other information in the trading environment to improve their
estimation of unknown variables. Useful information can include the proportion of
informed traders in the market, the distribution of endowments, information gathered from
futures or forward markets, or technical factors.® BEO focus on trading volume as a
technical trading factor, and argue that volume statisticsimprove the uninformed traders
estimation of the noisy fundamental.

Volumestatistics are useful to the uninformed trader if there isa consistent relation

between trading volume and the precision of the signal of the informed traders, and this

® Inthe model of Grossman & Stiglitz (1980), informed traders' demands depend only on 6 and p.
The uninformed traders demands depend on p, but the uninformed traders are also expected to learn the
relationship between return and price. Thisrelationship is determined by the equilibrium price function.
Grossman & Stiglitz show that an equilibrium price function exists for their model, and one such price
function depends on A, the proportion of informed tradersin the market. In more complex models, the
equilibrium price function may also depend on other useful market information. See also the discussion
and references in Chapter 2.
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relation can be learned by the uninformed traders. This is true because once the
equilibriumprice is observed, the only variablesunknown to the uninformed traders are
the precisions of the informed traders, and the value of the noisy fundamental. If the
combination of volume and pricereduce the uncertainty as to thevalue of the precision of
the informed trader, then volume statistics have informational value for the uninformed
trader.

In empirical work it has been shown thereis a statistical relation between volume
and the absolutevalue of pricechanges(see, e.g., survey by Karpoff (1987)). BEO argue
that volume itself isdriven in part by the degreeof certitudeof the agentsin their model as
to the value of their privateinformation. If the causality could ssmply be reversed then
volumewould point directly to precision. The results of BEO demonstrate that whilethere

IS not a one-to-onerelation between volume and precision, volumetends to increase with

precision until the precision of signals reaches the overall noise level of the model (pq <
py), and thenvolume decreases as precision exceeds thenoise level of the model (pq >

Py)- The BEOmodel also demonstrates the empirical relation between the absolute value

of price changes and volume. Combining these two relations then allows uninformed
tradersto makeinferencesbased on volume. For example, high volumeis consistent with
large absol ute price changes and may indicate low precision for the informed traders.
Unfortunately, there is no simple linear relation between volume and the
information held by the informed traders. In fact volume is a proxy for demand only if
signed volume’ is available. Furthermore, uninformed traders are only interestedin the
guantitiesdemanded by informed traders, and a single volume statistic does not provide
this. A single overall demand statistic can mask very heterogeneous behavior by subsets
of traders. The most common measure of volumein current use, however, is aggregate
non-signed volume. Thisvolume statistic is used in the BEO model to show the relation

between volume, prices, and precision.

¢ Signed volume indicates not only the number of transactions but also the direction of each trade. A
buy might be recorded as (+1) while a sell may be recorded as (-1). The sum of buys and sellsyieldsthe
net trade, and is referred to as signed volume.
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BEO define per capita volumeas an unweighted averageof all traders demandsfor
the risky asset.

= % I%I 2. | quantity demanded' | (37)

i=1

To be useful in the current period of trading, the expected volumefor that period
must be calculated. To find the expectationof the above expression for volume, the
presenceof the absolute valuefunction must be takeninto account. BEO provide a useful
lemmain the Appendix of their paper which provides for the expectation of the absolute

value of a random variable. A full derivation is provided in the Appendix of this chapter.

For any random variable, y ~N(6 , 1/p),

Ellyy +all = 2 Yew|-3{ %[ + 3ol %7 -o[=%7)| (a9

for d =a+y 6 and ® the cumulative normal distribution.
In alarge economy expected per capitavolume, v, in period one- giventhe priors
of group one and two and using the price equation to solve for 8 — can be expressed using

the above lemma as,

N\t

+
~
'C
v_

[ NZ | Po(Wo— p1) + PE(Y2— P1) ]
(39)

[I\}z Po(Wo— Pr) + PE(Ys — pl)]
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rewriting and substituting the expectations operator for its definition

= DIEl po(Wo—p) + p(yi - 1) |

— (40)
+ D E o (o p) + P20 - P
and with the help of the above lemma
o e 5 S o5
\/7 5 P1 Apl (41)
O o B ool o5
where
8. = po(pr — o) o (42)

npd +(1-pp®

is the demand of group j, @ is thestandard normal density, and & the cumulative normal

distribution function.

BEO draw three results from this expression for per capitavolume. First, under
simplifying assumptions, volume is decreasing with the precision of theinformed traders.
Second, volumeis non-linear with respect to price. Third, thelimit of volume over timeis
non-zero.

The first result relies on a comparative static analysis of the expression for per

capitavolume. Assumefor simplicity that the precision of the uninformed trader is very
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low (po = 0), thenthebehavior of volumeas the precision of theinformed trader increases

is given by thederivative of the per capitavolume relationwith respect to precision. This

relation can be shown as

(43)

av:uHSi(pwpi)) pw \[ (Pw —pi)
opr 2"\ pw/pl (m)(m)

In thisexpression, p is aways positive, the density of the standard Normal function is

always positive, and the ratio of the signal precisionto the overall noise is positive. This

leaves thelast termwhich depends on the relative magnitude between signal precision and
noise. When signal precision is inferior to noise (pq < py), thisterm causes the entire
expression to be positive. Assignal precisionincreases, volumewill also tend to increase.
When signal precision is greater than the overall noise term, (pq > py,), the entire

expression is negative and volume will tend to decrease as signal precision increases. Note
also that the slope has the same magnitude except for sign when signal precisionis near the
level of noise of the system. A maximumfor per capitavolume occurs when the signal
precision is the same as the overall noiselevel. A graph of these cases is presented as
Figurell.

This figure has an intuitiveinterpretation. While the precision of the informed
trader is increasing to thelevel of noise in the system, more trade occurs as the informed
traders are receiving better signals, and are able to act on the information from their
signals. Overal, prices are also becoming more informative. Oncethe precision of the
signal's surpasses the noise level, however, prices reveal more and more information and
volume tendsto zero. This is consistent with the no-trade theorems already discussed.
The better the quality of signal of the informed trader, theless willing an uninformed trader
will beto trade.

The Grossman & Stiglitz (1980) model uses costly information which may be
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purchased by any trader. Assignal quality increases or as prices more completely revea
the noisy fundamental to the informed traders, the dispersion of the expected value of the
risky asset decreasesuntil in essence all informed traders have the same estimate. In this
way, the BEO result leads to the Grossman & Stiglitz result over time as the informed
traders estimates of the value of the risky asset converge.

The second result describesthe relation between price and volume. By taking the
derivative of (41) with respectto price, it can be seen that volumeincreases as the current
market price and the traders' prior valuefor pricediverge. BEO use the positive sign of
the second derivativeis positive as evidence of a convex relation between price and
volume. Volume reachesa minimum when price and the prior for price coincide. As
volumeis defined as always positive, when pricedoes not coincidewith the prior, volume
increases. This result is supported by simulations of the model for various starting
parameters.

The last result describesthe behavior of the volume statistic over time. As time
proceeds, moreinformation becomesavailable to all traders since anew signal is recelved
each period. This allows Bayesian updating to be performed each period and after
sufficient periods, the true value of therisky asset will be revealed. It would be expected
that volumewould decline to zero as more information becomes availableregarding the
truevalue. BEO argue, however, that this does not occur and the limit of volume after
many periodsisnon zero. They explainthatin early periods, traderstakelimited positions
because they are not sure of the true value, whereas in later periods traders take large
positions to exploit small price discrepancies.

There are several factors which contributeto this argument. One factor isthe lack
of a budget constraint inthemodel. It isassumed that borrowing is unlimited and thereis
no restriction on the size of positionstaken. This allows traders to allocate unlimited
resources to exploit very small price deviations. Second, the results of the model are based
on uninformed tradershaving an essentially meaninglesssignal (asignal with a very large
variance). Thisimpliesthat the uninformed tradersare not updating their information other

thanto adjust their prior. Sinceprices are not revealing to the uninformed traders, the new



49

value of the prior will not differ significantly from the expected value of the risky asset
which is theinitial value of the prior. Therefore uninformed traders will not change their
behavior over time, and volume over time will not be affected by the uninformed traders.
The main contributing factor to the prediction of non zero volume over time is the
assumption as to the behavior of theinformed tradersover time. They argue, "Trade does
not disappear because although traders' beliefs are converging to a common belief their
precisions are diverging at the same rate," (p. 174). Aswill be seen below, however,
precisions must converge over time if traders are using Bayesian updating, and the
importance of any divergent belief to the tradersisinsignificant.

The time series values for the behavior of volume are constructed by setting the
initial prior to the expected value of therisky asset. In subsequent periods, the prior is
assigned asthe previous period's estimate of the truevalue of therisky asset as measured
by thenoisy fundamental. The precision of the uninformedtradersis set at zero implying
that all signals given to the uninformed trader are meaningless. The precision of the
informed trader is selected each period from aUniform distributionon the range[0,1]. In
the first period, the precision of the prior isassigned as the inverse of the variance of the
distribution from which the prior was drawn. Over time this prior is updated as new
realizationsof the noisy fundamental are observed as pricesin each period. Thisalows
thenoisy fundamental to convergeto the true value of thefundamental. Since the updated
prior precisionincreasesin each period whilethe precision of the signalsremainsconstant,
at some point the prior becomesmore valuablethan theindividual signal. Bayesiantraders
recognizethis fact and place more and more weight on the updated prior in their demand
eguation, and less weight on the current period signals. After many periods, the margina
value of anew signal becomes very small because current prices have converged to the true
value for the risky asset.

The crucial behavioral assumption as to trader behavior after many periodsis that
traders continueto act on privatesignals even when these private signals have amost zero
informational value compared with observed price. The argument rests on the fact that

sincetraders continueto receiveprivate signals, prices arenot fully revealing. In thelimit
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the weight traders put on their private signal converges to zero but never reaches zero.
BEO assume this private signal weight is sufficient to sustain non zero volume.

Fully revealing prices is not an issue with the single period model as prices can
never be fully revealingas long as thereis only one realization of the noisy fundamental.
Thisis the essential difference between the BEO model and the Grossman & Stiglitz
model discussed earlier. Whenthemodel is extended to multiple periods, however, prices
do become fully revealing for the informed traders if only partially revealing for the
uninformed traders. Prices reveal the noisy fundamental in early periods, and in later
periods pricesreveal thetrue valueas the informed traders use information received in each
period to update their estimates and these estimates converge to the true vaue.

To preservethe BEO results, the convergence of thenoisy fundamental to the true
value can be prevented by allowing the true value to change over time. The next section
shows that in this situation, prices are only partially revealing; and in the presence of

asymmetric information, volumeis non-zero.

4 Introduction of a stochastic fundamental

The agents of the preceding models had conjectured a price function based on their
priors and the current value of the signal. Agents knew that the true value of the risky
asset was stationary, and they used Bayesian updating to improve their estimation of the
true value of the asset. The resulting price functionwas linear in the agent's prior and a
noisy signal. An aternateapproach might alter this pricefunctionwithin the confines of a
rational expectationsformulation to allow the fundamental to follow a non-stationary
process. Assume for the moment that the new price function remains linear in this non-

stationary component and the noisy signal asfollows:

p = aS+py —yx (44)
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where S is defined as a fundamental following a discrete-time, continuous-state random
walk such that

St = St1 * & (45)

with ¢&;, a normally distributed random variablewith zero mean. Definethe per period

variance as 1/ps.  Given the distribution assumption, the expectedvalue for timet of this

processis §_1,
Informed and Uninformed traders receivea new signalsin each period which are

related to the fundamental. These signals differ only in their respectiveerror terms. The

error termfor theinformed trader's signal, elt, is defined to be on averagelessin absolute

value than the error term for the uninformed trader, szt. For the informed trader the

signal is

yh= S+ wp+ ey (46)

and the uninformed signal is

Y24 = Sp+wi+ €% (47)

Asinsection 3.1, both typesof signals contain noiseterms which prevent traders
from knowing the true value of the fundamental from a single signal. In the Blume,
Easley, and O'Hara model, the fundamental is constant and from period-to-period, traders
are able to improve their estimate of the value of the fundamental over time. Here,
however, the value of the fundamental changes each period, and due to the definition of

fundamental in equation (45), the sequenceof previousrealizations of the fundamental are
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not useful.

Tradersdo observe the previous period's price, and sinceit is conjectured that price
and the fundamental are related as seen in the price equation (44), the most recent price,
Pr.1, May be useful whereas historical prices are not. Traders would still need to know
how price relates to the fundamental. There may be many rational expectations solutionsto
this price-fundamental relation.” The solution considered in thismodel is that eachtrader's
best unbiased estimateof thefundamental in any period will be the most recent price. The

most recent price, py_1, will then be the prior for each trader in both groups.
Using this new definition of the prior, the expected value of the fundamental

conditional on thissignal will be

W _ PiP-1 + PV .
E{S = S i =12 48
(S IV o T i (48)
while the conditional variance is given by
Vislyl = 1o =12 (49)

pt + pf

Again traders are myopic, maximizing utility on a period-by-period basis.

Demands for each group of tradersis given by
PP~ PY + P -p)  1=12 (50)

and the equilibrium price equation can be rewritten as

" Some type of rational bubbles may be considered as another possible solution. See, e.g., Hamilton
(1985).
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_ PPttty + (A-ppy e
pr + ppf + (1-pp

P (51)

Applyingthe Strong Law of Largenumbers, the averagesignal will convergeto the

noisy realization of the fundamental as before,

_ PiP1 + (P + (L-p)pi)ee
pr + ppi + (1-pp{’

P (52)

Thiswill inturn allow per capita volumeto be expressed as in the previous section

as
sl S1 /A1 s1 /1 Xl /1
e AR ]
x/& Pt Pt Pt (53)
2 t 2 - )
2 Jp2 L P P p
where
N o
& =pi(p —p-1) t 1 (54)

upd +(L-pp2

is the demand of group j, @ is thestandard normal density, and ® the cumulative normal

distribution function.
Comparativestatics can again be performed on any single period, and the results

will be comparableto those of the BEO model. For any price, p, per capitavolume
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increasesin the precisionof group 1's signal for (p1 < py), and decreasesin p1 for (p1 >
py)- Thedifference hereis that p,,, is slightly more complicated due to the definition of

the fundamental. Whereasbefore 6 was defined as

Gt =y + Wi (55)

now S; replaces W and this expression becomes

0 = S +w (56)

where w; ~N(0O, 1/p,y), and S;~ N(S.q, Ups). Since 1/p,, and 1/ps are aredefined to
be uncorrelated, the conditions above require p1 < (py * Pf), for per capitavolumeto
increasein the precision of group 1's signal, and p1 > (py + Pf), for per capitavolumeto

decrease in the precision, pl.

Extending this model to multipleperiods demonstrateshow the movement of the
fundamental each period prevents prices from ever becoming fully revealing. Thisis
because the prior on the previous price cannot be updated each period as in the BEO
model. When the true fundamental is stochastic and follows a Markov process, traders
only weight the prior with the precision of the most recent period. This was not the
situation in the BEO model where the relativeweight on the updated prior was increasing
each period.

Thisdifference betweenthe BEO model and the stochastic fundamental model may

be seen by comparing the variance of the noise term of the stochastic fundamenta, pf, with

the updating formulafor the variance of the prior in the BEO model given as
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Pt-1 = [ (1) Py * Pql (57)

As t increases with each period, the size of the first term in brackets also increases while
the second termin bracketsremainsconstant. This causesthe entireexpression to increase
over time. Thus, the precision of the prior isincreasing over time.

The result of changing the time series property of the true fundamental is that
private signals have equal value over time, and the single period conclusions may be
applied to the multiple period model. Traders use Bayesian updating each period and the
weight on prior informationvs. new information remainsconstant. Prices cannot become
fully revealing because the noisy fundamental always has only one realizationfor each

realization of the true fundamental.

5 Discussion

It has been shown how the original Grossman & Stiglitz (1980) rationd
expectationsmodel can be modified by altering the underlying price process to study an
information structurewhere traders areasymmetrically informed. Starting with the model
of Blume, Easley, and O'Hara (1994), anew model was formulated which incorporated a
discrete-time continuous-state fundamental into the model. The time series properties of
per capitavolume were then be examined in this new formulation. While BEO argue that
volume has a non degenerate distribution over time when prices are fully revealing, it has
been shown that volume is non degenerateonly when the fundamental of the market is

stochastic and prices are partially revealing.
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Appendix

Proof of Lemma: In the appendix of BEO, alemma (Lemmal) is proposed to be used in
the proof of their Proposition 1. Since only a sketch of a proof is provided in BEO, afulll
derivation is provided here.

Lemma Let y~N(8, 1/p), then

EHVV + aH =+ 2o
for 6=a+y6

Proof: Asnoted in BEO,

Prilyy + a#aé = Pri-a#yy + a#taf

= Prif?® do-a-yoiiSus i i~ a-a-yoibl

Y

= dnégéa—a—yeéé - CDa’#é—a—a—yeéé,
for u, the standard Normal density. This expression can be explained by defining

E[yy + a} =y0 + a sincegE[y] = 6

vlyy +a] = y?/p, sinceV[y] = 1/p

then these equations can be transformed into a standard Normal with dummy variable a
as

—a—E[yy+a] I a—E[yy+a}

Viyy + a AV]yy + al

and substituting

—pé—a—ye—aé#u#@éa—ye—aé.

Y
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This probability can be thought of asthe area under the standard Normal between the
specified endpoints. It is convenient to use the cumulative distribution function. First find
all the area below the upper endpoint by using the cumulative distribution function, then
again using the cumulative distribution function subtract the area below the lower endpoint.
The result isthe difference of two cumulative distribution functions. Using first the upper
endpoint,

X—H
(0)

Z#

Pr[X #x] = Pr

or
diui = PrlU#u]
then

o[ fa - y0 - ab] = PrlU# fo - yo - ab].

Y

Similarly, the area below the lower endpoint is
cp[@é—a -vo - aé].

Subtracting yields

Cb[ﬂéa -y0 - aé] - ¢[£é—a L —aé}.

Y Y

Now the density function can be found by differentiating the cumulative distribution
function by use of the chainrule,

1
T
e
Q

f da

%7@[@&0{ - y6 - af] - ﬂ[@é—a - y6 - af]?.

Y

Once the density function is known, the expected value of any random variable x can be
found by using the definition of expected value,

4
E[x] = I xfixé dx

-4
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where f(x) is the density function for the random variable x. Since we know the random
variable cannot take on negative values due to the absolute value function, this may be
simplified to

E[a} = iaféaé da
0

wherea = |yy + a|, and f for ¢ isthe density function of [yy + a| from the above

calculation. Thisintegral may be solved by achange of variable, but first we define for
convenience,

b = and d=a+yb
Y
Then rewrite substituting,
Fiaf = CDAéaé = ®ibia-d6¢ — D ibi-a- 58,

and

do,dat o ., - y

T =flof = bepibda—0t + bibi— o - of¢.

a

Writing out the density function yields

. b  -1bfia-35:2 b —Lib%i-a-52
flof = —e ? + —e?’

J2n J2n
Now using this density function find the expected value,
4 i !
E‘yy + a| = E|0(| = lafiat da
0
or
b * -Lp2ia-5¢2 4 —%bzé—ct—ééz

E|0(|:—I0(e2 da + lae da .

Jem Jam

Use achange of variablesto smplify theintegra
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z,=a-0Y a=2z +9
z,=a+dY a=2z, -9
then substituting and separating
4 _1p2e 4 _L1p2pe
——1|lz,e? 'dz; +8le? 'dz,
4/2T[ —4 -4
4 1p22 4 _1p2p
——1|1z,e? “dz, -38le ® ‘dz,
AIZT[ -4 -4
Rewrite and reorganize as
4 _1p22 4 _lp2p
= —|lz,e? ‘dz; +lz,e? ‘dz
A/ﬁ 4 1 1 4 2 2
1 2_2 4 1 2_2
b 4 —=pz -=b“z
——|dle® ‘'dz;-8le’® ‘dz
1 2
a1 -4

The first and second terms will be solved separately. Thefirst term

4 _izi 4 —ibzg
lz,e? ‘dz;+ lz,e? “dz

-4 4

n

can be solved by noting that after the substitution

_ _ 1
Z=4Jx Y dz-—zhxdx
the following istrue

kz? _ kx 1 —_ g1 _kx
1ze*” = 1/x e, =dx = 17 e7dx,

Applying this technique yields,

b 1 e—%b z; N 1 e——b z
[2m | 2§-1b% 24-1b%
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and replacing original values then simplifying

1 {—%bzéa—ééz —%bzémae’zr
- — e + e
b./2m 0
then
L1 { - b4-5f . —%bzame’z}
e e
b 2mn
. ! 12 ! 12
andsince 4—o6¢ = 408 ,
L2 e—%ébaéz
bJ2m
replacing substituted values
/ 2
L2y e-%agée
A2Tp

Now choose the second term from the original expression above

1.2, 1,20
b 4 —-=bz 4 —-=bz
——1(5le? ‘'dz; -dle? 2dzzl
42T -4 -4
Rewrite substituting back out z,
1,2/ 2 1.2 2
db |4 -5b7ia-3¢ 4 - b joa+5¢
—|le? da —le? da
A2TC | 4 -4

and change limits of integration to reflect the absolute value function in the original
equation. Also change the order of integration and sign of each term

1. 2; 2 0 1 2, 2
5b 0 —Zb’ja-5¢ L p?ja+ai
—|-le? do +1e ? da
4'21-[ -4 -4

substitute back out b,
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2 .

534p | '%agﬁéj_aéi 0 ‘%Pﬁémaé.

N

I y |
-le da +1 e da
ym -4 -4
and define
5 e
1:4/3&01 eandwzzﬁame
y y
then
e y
dw=—da Y da=-—=dw
v o
implies
-3 5
a=0Y w,= “/;andwzz—“/;
y y
a=-4 Y w,=-4 and w, = -4
Using these
-34p ) 3dp
) Vo —iw Vo b,
ﬁ—lez ydw1+|e2 ydw2
Y421 -4 5/\/; -4 5"/;
smplifying
_6/‘/? 1 65 1
1Y —iwf 1V —Phiwe
oj-— | e dw +— 1 e
Joam Y e "

And using the definition of the cumulative distribution function

/

3~ i+ 0d%n )

Recombining the two pairs of integrals

/ 2
2y e‘%a@fw N
A 2TP




Derivation of the Equilibrium Price Equation: The derivation of the equilibrium price
equation beginswith individual trader demand for the risky asset. Individual demands are
arrived at by maximizing a negative exponentia utility function. Individua demands are
then summed over al traders, and a market clearing condition isimposed.

The individual demand for the risky asset is

di: E[lei] -p
Var[[y | H']]

where d istheindividual demand for trader i , and the conditional expectation and

variance of the value of the risky asset given the available information are

E[g|H] and Var[[y|H]].

When aprior signal is available, demand for each type of trader takes into account the prior
and current signal through Bayesian updating. The demand by the informed and
uninformed trader in period 1is

PodW,= Pib + pTEyy — Puf
and

PodW,— pib + pTAY: — Pié
where the precision (inverse of variance) for the prior, the informed trader, and the

sl s2

uninformed trader are denoted by Po. Py, ad py , and the prior and current signals are

W, and )

Summing the individual demands over both kinds of tradersyields

N N N N
3d = 3 p,dw,- pif + 13 pliys - pié+il-pt 3 pTiyL - pub.

1 i=1 i=1 i=1

The market clearing condition that excess demand must be zero can now be applied. Also,
divide both sidesby N

N .

. N .

o iv-pt P13 yi-nd dr-pietisyi -

o o 1 + di=1 |+ I I
N N N

0=N

Then define



65

and substitute into the above to arrive at
0= podW,— P, +upy iy — puf+dl-uEpTEyT — put -
Thefirst period price can now be solved for as
sl—1 S2 —2

_ PWot PV 11-pipTy?

s2

Po+ P +i1- pbps

1

and by applying the Law of Large Numbers,

—j

limy =6
N64

the equilibrium priceis
o = PoW,+ iups +i1-pépee A
l potupy+Hil-pép?
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Figurel

Matrix of Information Structures
Used in Rational Expectation Trading Models

Symmetric

Asymmetric

Uniform Dispersed

Diamond & Verrecchia

Brown & Jennings

Grossman & Stiglitz Blume, Easley & O'Hara

Romer | Romer [
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Figurell

Precision - Volume Relation

Volume

} Rho(1)
0 Rho(w)

Precision



