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RESUMO: o presente trabalho examina a hipótese de eficiência de mercado 
estimando um modelo de series temporais com coeficientes que variam no tempo. 
A metodologia utilizada foi a do Filtro de Kalman para um modelo autoregressivo 
e de média móvel (ARMA) com erros modelados com heteroscedasticidade 
condicional autoregressiva generalizada (GARCH). O modelo foi estimado pelo 
método da máxima verossimilhança para os retornos dos preços futuros do açúcar. 
As variáveis de maior ordem de defasagem foram as que mostraram a maior 
queda em valor absoluto no tempo; o que pode sugerir que variáveis com maior 
ordem de defasagem perdem peso no tempo a medida que os mercados tornam-se 
mais eficientes. 
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SUMMARY: this paper examines the market efficiency hypothesis by estimating 
time-varying coefficients using Kalman Filter techniques for an Autoregressive 
Moving Average model (ARMA) with Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) errors. The estimation technique utilized was 
maximum likelihood for sugar future returns. The higher lag order variable 
coefficients were the ones which showed greater fall in absolute value over time, 
which may suggest that variables with higher lags may lose weight as markets get 
more efficient.  
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1. Introduction 
 

The behavior of financial markets has been a theme of ample discussion 
amongst economists and financial market experts. Discussions about the Efficient 
Market Hypothesis (EMH) and the random walk hypothesis versus dependence 
are some topics of great weightiness in recent studies. Themes of great interest 
and equally controversial, they are very important for the study of market 
microstructure. 

The origins of the (EMH) can be traced back at least as far as the pioneering 
theoretical contribution of Bachelier (1900) and empirical research of Cowles 
(1933). The modern literature begins with Samuelson (1965), whose contribution 
is neatly summarized in his article "Proof that Properly Anticipated Prices 
Fluctuate Randomly". Price changes must be unforecastable if they are properly 
antecipated, i.e., if they fully incorporate the expectations and information of all 
market participants. Fama (1970) summarizes this idea by writing: "A market in 
which prices always 'fully reflect' available information is called 'efficient' ". 
Fama's use of quotation marks around the words "fully reflect" indicates that these 
words are a form of shorthand and need to be explained more fully. More 
recently, Malkiel (1992) has offered a more explicit definition which can be 
summarized as follows: "A capital market is said to be efficient if it fully and 
correctly reflects all relevant information in determining security prices. Formally, 
the market is said to be efficient with respect to some information set ... " 

Fundamentally, it is said that the capital market is efficient if: a) all security 
prices fully reflect all known market information, and b) no traders in the market 
have monopoly control of information. There are three possibilities of efficient 
market: 1) a strong form, which encompasses all information, including that 
possessed by insiders; 2) a semi-strong form, which includes all public 
information; and 3) a weak form, which includes only that information which can 
be gleaned from an examination of an historical series of security prices. 
Specifically, the future prices reflect the action of producers, consumers and 
speculators about the price of a commodity at a later date. To be of value to 
hedgers, the futures prices must respond quickly and accurately to relevant new 
information. The concept of efficiency referred in this paper concerns to the weak 
form of efficiency. 

An autoregressive memory of a time series model indicates how fast 
information is processed by economic agents in the market. That is, a long 
memory model shows a slower assimilation of information, whereas a short 
memory model shows a faster assimilation of market information. This paper 
intends to examine the behavior of the autoregressive memory of  sugar future 
returns over time. The methodological procedure used is the estimation of an 
autoregressive model with Kalman filter time-varying coefficients to show the 
dynamic behavior of the return's autoregressive memory. Thus, this paper has the 
aim of rising some questions about the efficiency in commodity futures markets, 
especifically for sugar future prices, suggesting that the increasing market 
efficiency is related to decreasing autoregressive memory.  

This paper is organized as follows. In Section 2, it is presented a discussion 
about the random walk hypothesis and some considerations about commodity 
futures markets. In sections 3 it is presented the methodology and in section 4 it is 
presented the empirical results. Section 5 presents the conclusions of the study.  
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2. The Random Walk Hypothesis, Efficient Markets and Brownian Motion 
 
  With respect to the commodity markets, we can find some results rejecting 
the random walk hypothesis. Taylor (1985), for several series of futures prices, 
strongly supports the conclusion that a small amount of relevant information is 
reflected slowly by prices, causing price trends. Another interesting result 
presented were the substantial changes in standard deviations from contract to 
contract. Cargill and Rausser (1975) show the strong evidence that the random 
walk must be rejected as a realistic description of commodity markets. That is, the 
random walk model does not represent a reasonably accurate explanation of 
commodity market behavior. Leuthold (1972), using spectral analysis and filter 
rules, examines the live cattle futures markets indicating that a simple stochastic 
process (random walk) appears consistent with the price behavior of some of the 
contracts but not with others.  

Peterson, Ma and Ritchey (1992) presented evidences of dependence in 
commodity price using variance ratio test proposed by Lo and MacKinlay (1988). 
They investigated 17 commodity spot-prices and identified three theoretical 
components in commodity price: 1) a systematic component reflecting price drift 
or the expected arrival of information; 2) a negatively autocorrelated component 
that is attributed to the bid-ask spread of market makers; and 3)  a noise term that 
represents the pricing of unexpected information. The variance ratio test rejected 
the random walk hypothesis since many short-term realized returns exhibit either 
positive or negative persistence over different time horizons. Another aspect that 
they concluded is that the positive serial correlation between successive price 
changes goes beyond the structure of the underlying fundamentals. For many 
commodities (especially grains and other crops), there is some evidence that 
positive serial correlation exists in price changes over short and intermediate time 
horizons. 

The investors are constantly subjected to a vast quantity of diverse information 
and, as we saw in the first section, the concept of (EMH) is very close to the idea 
of a market processing quickly and efficiently the information as they arrive to the 
market. In the early commentaries of (EMH), the statement that the current price 
of a security "fully reflects" available information was assumed to imply that 
successive price changes are independent. That is, price changes can be 
determined only by new information. Thus, today's market returns are unrelated to 
yesterday's returns, as that information has already been processed. In addition, it 
was usually assumed that successive changes (or returns) are identically 
distributed. 

The random walk hypothesis states that present and past prices cannot be used 
to find a more accurate forecast of the next price than today's price. There is then 
no correlation between the price changes on different days and no information in 
past prices useful for forecasting future prices. Moreover, the concept of market 
rationality, which is consistent with the random walk theory, asserts that assets are 
priced by traders who use all available information to make unbiased predictions 
of future prices. 

Perhaps the simplest version of the random walk hypothesis is the case of an 
independently and identically distributed (i.i.d) disturbance in which the dynamics 
of [ ]tP are given as follows: 
 

ttt PP ε+= −1 ,   tε  ~ i.i.d N (0, σ2)    (1) 
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where (0, σ2) denotes that  εt is distributed with mean 0 and variance σ2. The 
independence of the disturbance [εt  ] implies that the random walk is also a "fair 
game". The "fair game" model just says that the conditions of market equilibrium 
can be stated in terms of expected returns, and thus it says little about the details 
of the stochastic process generating returns. Independence implies not only that 
disturbances are uncorrelated, but that any nonlinear functions of the disturbances 
are also uncorrelated.  

The derivation and definitions given below, taken from Hamilton (1994) 
and Campbell, Lo and MacKinlay (1997) will show the relation between the 
random walk model and the brownian motion. Consider again the equation (1),  

 

ttt PP ε+= − 1 ,    tε ~ i.i.d  N (0, 1)  
 

If the process is started with 00 =P , then it follows that  
 

ttP εεε +++= K21  
 

P ~ N (0, t) 
 

Moreover, the change in the value of P between dates t and s ,  
 

sttts PP εεε +++=− ++ K21 ,  
 

is itself ( ))(,0 tsN − and is independent of the change between dates r and q for 
any dates t < s  < r < q . 

 
Consider the change between 1−tP and tP . The disturbance tε was taken to 

be )1,0(N . Suppose we view tε as the sum of two independent Gaussian 
variables: 

 

ttt 21 εεε += ,   itε ~ i.i.d ( )2
1,0N  

 
We can then associate t1ε with the change between 

1−tP  and the value P  

at some interim point ( )2/1(−tP ) and t2ε  with the change between )2/1(−− tt PP  as 
follows 

 

ttt PP 11)2/1( ε=− −−        (2) 
 

ttt PP 2)2/1( ε=− −         (3) 
 

Sampled at integer dates t = 1,2,  ... , the process of (2) and (3) will have 
the same properties as (1), since 

 
tttt PP 211 εε +=− −  ~ i.i.d. )1,0(N  
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These process (2) and (3) also relate at noninteger dates { }∞
=+ 02

1
tt , and 

retains the property for both integer and noninteger dates that ts PP −  ~ 
),0( tsN −  with ts PP −  independent of the change over any other 

nonoverlapping interval. 
By the same reasoning, we could imagine partitioning the change between 

1−t  and t into N  separate subperiods: 
 

Nttttt PP εεε +++=− − K211 ,  
 

with itε  ~ i.i.d. )/1,0( NN . The result would be a process with all the same 
properties as (1), defined at a finer and finer grid of dates as N  increases. The 
limit as ∞→N  is a continuous-time process known as continuous-time random 
walk or standard brownian motion, that has a central role in modern derivative 
pricing models3 and in the context of (EMH). The value of this process at date t is 
denoted )(tW that sometimes is called as a Wiener process4. A realization of a 
continuous-time process can be viewed as a stochastic function, denoted ( )⋅W , 
where 1),0[: ℜ→∞∈tW .  

Say that ( )⋅W  is a continuous-time stochastic process, associating each 
date [ ]Tt ,0∈  with the scalar ( )tW such that: 
a) For any 1t and 2t such that :0 21 Ttt ≤≤≤  

 
( ) ( )12 tWtW −  ~ ( ))(),( 12

2
12 ttttN −− σµ  

 
b) For any 1t , 2t , 3t  and 4t such that Ttttt ≤≤≤≤≤ 43210 , the increment 

( ) ( )12 tWtW −  is statistically independent of the increment ( ) ( )34 tWtW − . 
c) The sample paths of ( )tW  are continuous. 

If we set 0=µ and 1=σ , we obtain standard Brownian motion which we 
shall denote by )(tZ . Accordingly, we may re-express )(tW as 

 
)()( tZttW σµ += ,     [ ]Tt ,0∈  

 
This continuous-time process is closely related to the discrete-time 

versions of the random walk described and, as we can note, the discrete-time 
random walk can be defined as a sequence of continuous-time process which 
converges to a continuous-time analog of the random walk in the limit.  

Thus, the change of the financial returns is called "Brownian" if it vary 
randomly so that: a) The motion at any one time is independent of the motion at 
any other time. That is, it has no "memory" of which way it was going a little 
while ago; b) The expected change over time is zero. It doesn't have "preferred" 
direction in which to drift; c) The expected distance of the change is greater than 
zero. In other words, it doesn't just sit still ! 
 

                                                                 
3 See, Merton (1990) 
4 See, Neftci (1996) 
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3. Methodological Procedure 
 

The data set used in the present work correspond to a series of future prices 
returns for sugar during the period of January 17, 1985 to June 15, 1998, summing 
up to a total of 3318 observations. The origin of the data is the Coffee, Sugar and 
Cocoa Exchange (New York).  

The returns of an asset price (Pt) can be calculated following Cooper (1982). 
Consider the following identity:  

 
Pt+1 / Pt = exp [loge (Pt+1 /Pt )] 

 
Which is similar to 

 
Pt+1t = Pt exp[loge (Pt+1/Pt)] 

 
Moreover, considering A the sum to which P dollars will amount after t periods at 
a continuous rate of return r is, A is given by the following expression:  

 
A = P exp (rt) 

 
After 1 time period (t = 1), the expression above could be compared in a way that 
the returns r can be represented as follows: 

 
r = loge (Pt+1/Pt) 

 
To examine if returns are uncorrelated, the autocorrelation function was 

calculated, and the statistical test was performed according to Box, Jenkins and 
Reisel (1994). The autocorrelation function is  

 

)0(
)(

][
],[

][][

],[
)(

γ
γ

ρ
k

rVar
rrCov

rVarrVar

rrCov
k

t

ktt

ktt

ktt === +

+

+  

 
The statistical test for ρ(k) is given by the Ljung-Box-Pierce Q-statistics, which 
can be represented as follows: 

 
 

∑
=

−−+=
K

k
kkTTTQ

1

21 ˆ)()2( ρ  

 
For T observations and k lags. The Q statistic is asymptotically χ2 distributed with 
s degrees of freedom (Enders, 1995). The null hypothesis is of no autocorrelation. 
The Q statistic was used as a random walk test for the daily returns.  

The empirical time series was assumed to follow an ARMA process with 
heteroskedastic errors. Statistical tests were performed to examine stationarity, 
and the Box-Jenkins procedure was used to specify the ARMA model. The error 
volatility of the model was examined a Lagrange multiplier (LM) test which was 
compared to a chi-squared statistic. A proper GARCH error structure was 
adjusted, and the ARMA model with GARCH errors were specified as follows:  
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yt = φ1yt-1 + … + φpyt-p + δ + ε t - θ1ε t-1 - … -θqε t-q 
 

where φ and θ represent the coefficients for the autoregressive and the moving 
average part of the model, respectively, and δ  stands for the mean of the process. 
The error term of the ARMA process is assumed to follow the specification 
represented next (Enders, 1995) :  

 
1   where 2 == νσνε ttt h  

 
where and ν is the multiplicative disturbance and h is represented as follows:  

 

∑∑
=

−
=

− ++=
p

i
iti

q

i
itit hh

11

2
0 βεαα  

 
That is, the ARMA error squared is assumed to follow a new ARMA process 
 The coefficients of the ARMA process were allowed to vary using the 
Kalman filter algorithm. The time-varying Kalman filter algorithm can be 
parsimoniously represented in the state-space representation as follows (Hamilton, 
1994): 

 
ξ t+1 = F ξ t + vt+1 

 
yt = A'xt + H' ξ t + wt 

 
where the first expression is the state equation and the second is the observational 
equation. F, A' and H' are matrices of parameters of dimension (r × r), (n × k) and  
(n × r) respectively, xt  is a (k × 1) of exogenous or pre-determined variables and 
ξ t is a vector of nonobserved variables. The (r × 1) vector vt and the (n × 1) vector 
wt are white noise vectors such that E(vtvτ) = Q for ( t = τ ) and 0 otherwise, and 
E(wtwτ) = R for ( t = τ ) and 0 otherwise. The errors vt and wτ are assumed to be 
uncorrelated at all lags, that is, E(vtw'τ) = 0. For the time-varying coefficient 
model F(⋅), Q(⋅), H(⋅) and R(⋅) are matrix-valued functions of xt. That is, the 
coefficient vectors and the error variance of the state and observational equations 
are allowed to vary over time as a function of  x.  
 All computational work was performed using the software RATS for 
Windows version 4.31.  
 
4. Discussion of the Results 
 
 Figures 1 and 2 show the returns of sugar future prices and the 
autocorrelation function for this series, respectively. An augmented dickey-fuller 
test showed that the series for sugar is stationary. An exam of the autocorrelation 
function of the series for the returns of sugar future prices, using the Ljung-Box-
Pierce statistics, showed that the series is not random walk (table 1). It is clear 
from visual inspection of figure 1 that the returns are not i.i.d. For example, 
volatility was clearly higher in the begining of the series, during the 1980's than 
during the next years. This result was confirmed  by a Lagrange multiplier (LM) 
test (161.314) for 2 degrees of freedom, according to Enders (1995). 
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Figure 1 -  Daily Returns of the Sugar Future  
 

 
 
 
 
 
 

Figure 2 – Sample Autocorrelation for the Returns  
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Table 1 – Ljung-Box-Pierce Statistic for the 
Autocorrelations of the Returns  

 
Q (K) Q-value P-value 
 
Q(2) 

 
41.515 

 
0.000 

Q(4) 44.750 0.000 
Q(6) 46.976 2×10-8 

Q(8) 47.528 12×10-8 
Q(10) 61.559 0.000 
Q(12) 65.777 0.000 
Q(14) 67.065 1×10-8 

Q(16) 68.745 2×10-8 

Q(18) 70.143 4×10-8 

Q(20) 71.495 1×10-7 

 
 

 The series of the returns was adjusted as an ARMA process. The best fitted 
models was an ARMA (3,1) which is shown in table 2. The ARMA model 
estimated shows coefficients statistically significant for all variables but AR{3}. 
 
 

Table 2 – Estimated Coefficients for the ARMA (3,1)  
Model of the Returns 

 
Variables  
 

Coefficients Standard Error t-Statistic 

 
AR{1} 

 
-0.83 

 
0.13 

 
-6.33 

AR{2} -0.14 0.03 -5.32 
AR{3} -0.03 0.02 -1.56 
MA{1} 0.73 0.13 5.64 
    

 
 

Table 3 shows the maximum likelihood estimation for the ARMA(3,1) 
model with GARCH(2,1) errors. For the ARMA(3,1) model, all coefficients but 
the constant were statistically significant. The GARCH error model showed all 
coefficients but MA(1) statistically significant at 5% level. 
 Figures 3,  4 and 5 showed the values of the coefficients of AR{1}, AR{2} 
and AR{3} over time. All figures show a pattern of high variance of the 
coefficients up to end of the first half of the sample. During the second half 
coefficients are more stable. The coefficients do not show a clear pattern of 
decreasing values for higher lags and stable values for the lower lags as was 
hypothesized. However, the coefficient of the highest lag variable showed the 
greatest fall in absolute terms when compared to other coefficient variables. This 
may suggest that higher lag coefficients lost weight over time when compared to 
lower lags. Also, the pattern of high variance in coefficients in the first half of  the  
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Table 3 – Results of the Maximum Likelihood Estimation 

 

Variables  
 

Coefficients Standard Error t-Statistic 

 
ARMA(3,1) 

 
 

 
 

 
 

Constant 3.3×10-4  3.1×10-4  1.06 
AR  {1} -0.64 0.24 -2.73 
AR  {2} -0.13 0.03 -4.09 
AR  {3} -0.07 0.02 -2.91 
MA {1} 0.57 0.23 2.42 
    

GARCH (2,1)    
Constant 7.3×10-5  3.3×10-6  22.24 
AR {1} 0.28 0.03 8.45 
AR {2} 0.36 0.03 9.98 
Ma {1} 0.06 0.00 0.00 
    

 
 
sample and the relatively lower variance of the coefficients in the second half may 
suggest that market is becoming more stable over time. If one assume that market 
stability is related to efficiency, the pattern of variance of the coefficients can be 
regarded as supporting the hypothesis behind this work.   
 
 
5. Final Coments  
  
 The underlying hypothesis behind this paper is that financial markets are 
becoming more efficient due to the increasing availability of information. Market 
efficiency means that economic agents have most of existing information readily 
available to guide decision. Accordingly, if markets are becoming more efficient  
a short autoregressive memory models are becoming more representative of 
financial time series data. This is to say that higher lags in time series models are 
weighting less over time. This pattern can be understood as an indication that 
agents are incorporating more available information over time before taking 
decision. The findings of this paper showed evidences that  higher lag variables 
weighed heavily in the beginning of the series as compared to more recent years. 
This evidence indicates a change regarding the behavior of sugar future prices 
considering that  a strong tendency for a short autoregressive model over time can 
be observed. Also, the decreasing volatility of the coefficient  may be seen as an 
indication of increasing stability. 

Some considerations about the reasoning for a significant loss weight of 
higher lag variables over time can be drawn as follows. This market may not be 
rational, a profitable trading strategies may exist, or  psychological factors would 
be important for pricing securities. For example, a time series patterns of returns 
would occur because investors either overreact or only partially adjust to 
information arriving to the market. In many cases, investors may react late to 
trends, thereby incorporating past information into present purchasing strategies.   
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Thus, people do not always behave in a linear fashion to new information, 
processing it immediately, as the (EMH) requires. Indeed, people, and nature in 
general, are often nonlinear. Thus, for "astute" investors, excess profits can exist 
even if financial markets are well functioning.  
 Even though the discussion on market efficiency is not new, empirical 
tests on financial time series regarding market efficiency has been growing during 
the past years. With advances in the field of computer science, and the recent 
developments of time series techniques, it is likely that this subject will be in 
discussion during the next years. It would be important to examining time-varying 
coefficients for the returns of other commodities, as well as testing a higher 
variety of model specifications. Futures works should include more details about 
the possible random walk behavior in the commodity futures markets. Other 
techniques such as variance ratio test, spectral analysis, nonsynchronous trading 
model, an investigation about the bid-ask-spread effect in the data, plausible 
sources for the inefficiency in these markets, etc could be used to examine the 
Efficient Market Hypothesis. Simulations with other futures contracts will be very 
elucidative to future considerations.  
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Figure 4 - Values for the Time Varying Coefficients for AR{2} 
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