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Summary. Let X be a symmetric stable process of index
a € (1,2] and let L7 denote the local time at time ¢ and posi-
tion z. Let V(¢) be such that Ly(t) = sup, g LY. We call V()
the most visited site of X up to time ¢. We prove the transience
of V, that is, lim; o |V (t)| = oo almost surely. An estimate is
given concerning the rate of escape of V. The result extends a
well-known theorem of Bass and Griffin for Brownian motion.
Our approach is based upon Dynkin’s isomorphism theorem,
and relates stable local times to fractional Brownian motion
and further to the winding problem for planar Brownian mo-

tion.
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1. Introduction

Let X = {X(¢); t > 0} be a symmetric stable process of index «, with X (0) = 0.

That is, X has independent and stationary increments, with characteristic function
(1.1) E(e®*X®)) = exp(—co |2|* 1),

where ¢ > 0 is a constant. We assume « € (1, 2], so that X admits a jointly continuous
local time process {L7; t > 0, x € R} (see for example Boylan [2]), which we may normalize
so that for any ¢ > 0 and Borel function f > 0,

[ rxnas= [~ s s

Clearly, when o = 2, X is Brownian motion.

We are interested in the set

V() ¥ {a: eER: LY = supo},
yeR
which usually is referred to as the set of the “most visited sites” of X or the “favorite
points” of X up to time ¢, see Erdés and Révész [6]. It is known (Eisenbaum [4]) that V()
is either a singleton, or, for countably many ¢, composed of two points, but we will not use
this property.

Let us choose

1.2 V()=
(1.2) (t) = max =,
which will be called the (maximal) most visited site. We mention that the choice of V (t)
is irrelevant, in the sense that all the results in this paper remain unchanged if we replace
V (t) by any element of V().
Erd6s and Révész [6] were the first to study the most visited site, for simple random

walk. In the case of Brownian motion, we recall the following somewhat surprising result
of Bass and Griffin [1].

Theorem A (Bass and Griffin [1]). If X is a Brownian motion, i.e. if o = 2, then for

any v > 11, |
)Y
lim 108

e tlT ‘V(t) = 00O, a.s.
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In particular, Theorem A confirms the transience of the process V, in the sense that
lim 00 |V ()| = 0o almost surely. The problem of determining the exact rate of escape of
V remains open to the best of our knowledge, though it is also proved in [1] that almost
surely, lim inf,_,o, t~/2(logt)Y |V (t)] =0, for all v < 1.

It is natural to ask if the most visited site is still transient for stable processes. The

answer is in the affirmative. Here is the main result of this paper.

Theorem 1.1. Let 1 < a < 2. For v>9/(a— 1),

~
lim (log )

t— 00 tl/a

[V (t)| = oo, a.s.

We say a few words about our method. The proof of Theorem A by Bass and Griffin
relies on the Ray-Knight theorem and a path decomposition for the Bessel process, together
with some martingale properties related to the Brownian local time. In the case of a stable
non-Brownian process, no such path decomposition or martingale property is available.
Therefore, we have to adopt a different approach. Our starting point is an extension,
which has been obtained in [5], of the classical Ray—Knight theorem to symmetric Markov
processes. In particular, this relates stable local times to fractional Brownian motion. It is
therefore natural that we shall be using some Gaussian techniques. Our method shows a
relationship between fractional Brownian motion and the winding angle of planar Brownian
motion; this may be of independent interest.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminaries
on fractional Brownian motion, Ray-Knight theorem and Brownian winding angles. They
lead in Section 3 to our main probability estimate. The proof of Theorem 1.1 is completed
in Section 4.

Throughout the paper, the letter ¢ with subscripts denotes unimportant (but finite

and positive) constants.
2. Preliminaries

2.1. FRACTIONAL BROWNIAN MOTION

By fractional Brownian motion of index 3 (abbreviated FBM(f) or simply FBM), we
mean a centered Gaussian process n = {n(z); z € R}, whose covariance function is given

by

E((@)n(w)) = 5 (o1 + bl = le /7).
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(In particular, FBM(1) is Brownian motion). Unless stated otherwise, we always assume
the FBM to start from 0, i.e., 7(0) = 0. The self-similarity of FBM will be frequently used
without further mention: if 7 is an FBM(/), then for any a > 0,

() " 0P (0,

«12¥» Jenotes identity in law.

where
We shall also need the following law of the iterated logarithm (LIL): if n is an FBM(f)
with 3 € (0, 1],

(2.1) lim sup n®) =1, a.s.

t»0+ /2t log |logt|

This can be found in Marcus [12]. We mention that, in this paper, we shall only need (2.1)

in the case § € (0, 1], though the latter condition is not necessary.
2.2. RAY-KNIGHT THEOREM FOR STABLE PROCESSES

Our basic tool is an extension of the Ray—Knight theorem for symmetric strong Markov
processes, which bears a relatively simple form in the case of stable processes. It was proved
in [5] by means of Dynkin’s isomorphism theorem. The latter, which relates the local time
of Markov processes to Gaussian processes, turns out to be a powerful tool in the study of
local times and additive functionals. See Marcus and Rosen [13] and [14] for a deep study
of this subject.

As before, let X be a symmetric process of index a € (1, 2], with local time denoted
by L. Let

(2.2) 7(r) dof inf{t >0: L? > T}, r >0,

which is the (right-continuous version of the) inverse local time at 0.

Theorem B ([5]). Let 1 < a < 2, and let n be an FBM(« — 1) independent of X. It is

possible to choose a value for the normalizing constant cq in (1.1), such that

. 1 law
(2.3) Lyt 7 = S (n+V2)2

1
2

Remark. In the case a = 2, Theorem B takes the form of the additivity property of

squared Bessel processes, which is an equivalent form of the usual Ray-Knight theorem
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for Brownian local time at 7(1); see Ray [16], Knight [11]. We also mention that, unlike
Dynkin’s isomorphism theorem, (2.3) does not involve signed measures. This will enable

us to obtain some sharp inequalities for various suprema of L, ().
2.3. SCALING FOR STABLE LOCAL TIMES

There are some easy scaling properties for the local time process of X. Though they
are very simple, we present a list of these properties here in order to facilitate applications.
As before, X is symmetric stable of index «a, with local time L, and inverse local time 7

at 0 as in (2.2). Then we have the following identities in law: for any ¢ > 0,

(L5 1> 0,0 eR} ' [ D/ep/? 4> 0, s e R},
{T(CT‘); r> 0} faw {ca/(a_l)T(r); r>0 },

T law m/cl/(a—l)
{LT(C,,); tZO,xE]R} av {cLT(T) ;tzo,a:eR}.

2.4. BROWNIAN WINDINGS

Let {Z(t); t > 0} be a planar Brownian motion, starting from (1,0). It is known that
every point is polar for Z. In particular, with probability one, Z never hits the origin. So
there exists a continuous determination of 6(t), the total angle wound by Z around the
origin up to time ¢ (with, say, #(0) = 0). Thus 6 records the angle and keeps track of
the number of times the Brownian path has wound around the origin, counting clockwise
loops (—27) and counterclockwise loops (2).

An important feature of the winding angle process 6 is that it can be represented as

a Brownian time change, namely,
(2.4) 0(t)=B(H()), t=>0,

where B is a standard one-dimensional Brownian motion starting from 0, independent
of the random clock H. This actually is a particular case of the so-called “skew-product
representation” for planar Brownian motion; see It6 and McKean [9, p. 270] for more
details. It is possible to completely determine the law of H(¢) for each ¢t. Indeed, writing

R(t) o IZ(t)|| (the radial part of the planar Brownian motion), then

(2.5) He = | Rf—é).

_5_



Moreover, the conditional Laplace transform of H(t) given R(t) was determined by Yor
[20]: for a > 0,

(2.6) E[e~H®) | R(t)] = %’

where I,,(-) is the modified Bessel function of index v.

3. Key estimate

Throughout the section, X is a symmetric stable process of index a € (1, 2], starting
from 0, with local time L. The inverse local time at 0 is denoted by 7, as in (2.2).

Since the normalizing constant ¢y (defined in (1.1)) has no influence on Theorem 1.1,
we shall from now on choose ¢y to be the one satisfying Theorem B (see Section 2.2),

without further mention.

Here is the main probability estimate of the paper.

Theorem 3.1. There exists a constant ¢y € (0,00) such that for all 0 < A < 1/2,

(3.1) ]P’( |Sl|l£)1L Ty <1+ )\) < 1 A5/% | log A2
x

Proof. We only have to treat the situation where A is sufficiently close to 0.

Let {n(z); z € R} be an FBM(a — 1), independent of X. Consider the following
measurable events:

E]_ déf{ sup LT(1)<1+)\}

|z|<1
o { ) < ca A, forall |z| < AV (@D }
By { ) < ca, forall|a¢|<1}

B {n?(2) < 22> [log A, for all V(D < [z <11,

(So the probability term on the left hand side of (3.1) is P(E7)). By self-similarity,
P(E,) = ]P’(n2(a:) < ¢, for all |z] < 1) = P(E3),
so we can choose cq sufficiently large such that
2
(3.2) P(Ey N E3) > 3"
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On the other hand, by the LIL for FBM (see (2.1)) and symmetry, the random variable

2
sup sup #
0<u<1/3 ui/(a—D<|g|<1 |2|*71[logu]

is almost surely finite. (Actually the |logu| term here can be replaced by log|logul|).
Therefore, it is possible to pick ¢y so large (how large depending only on «) that P(Ey) >
2/3. Jointly considering this and (3.2), we are able to fix a choice for cs such that

1
(3.3) P(E2NEsNEy) > 5.

Now, observe that Ey and E; N E3N E4 are independent, and that

4
() E:i CEs,
i=1
where .
Es {Lm(1)+2n()—1<)\+02f0(:1:), forall\x|§1},
folz) & A if 0< |z| < AY(e=1)
O U min(jz|*1 [log Al, 1) if AV < |z < 1.
Therefore,
4
IP’(El)lP’( ):]P’(ﬂEZ)
=2 =1
< P(Es)
1
:]P’(i(n V2)2—1< A+ e fol), for\a:|§1)
1
<P 5 (@) +v2)2 = 1< (1+¢2) folw), for |2 < 1),

where we have used (2.3) in the last equality. It is easily checked that for a € (0,1 + ¢3),
if (y +v/2)%/2—1 < a, then y < c3 a, where c3 is a constant depending only on the value

of ¢co. Taking into account (3.3), we arrive at:
(3.4) P(E,) < 3]1»(77(95) <es(1+e) folz), |z]< 1).

The next step is to use Slepian’s lemma to estimate the probability term on the right hand
side of (3.4).



To this end, let {W1(t); ¢ > 0} and {Ws(t); t > 0} be two independent real-valued
Brownian motions, with W;(0) = W2(0) = 0. Define the process U = {U(z); z € [-1, 1]}

Wi (z@1), if 0<z <1,

Ly (|z)*=t) + LB Way(jz*1), if -1 <z <0,

Clearly, for any z € [—1,1],
(3.5) B2 (2) = ol = B2 (2)).

In order to apply Slepian’s lemma, we have to compare the covariance functions of U and
n. Let (z,y) € [-1,1]%. There are two possible situations. the first case is when xy > 0.
We first assume = > 0 and y > 0. Then (writing a A b for min(a, b))

EU@UW) = @Ay) ™ > ¢ (a5 +5*" — o —y*) = En@)n())

The situation where x < 0 and y < 0 is similar.
Another possibility is that xy < 0. Without loss of generality, we assume z > 0 and y < 0.

In this case,

EU@U() = 5 (2 A ly)*"
> (e e e )™ )
= E(n(z)n(y)).
Therefore, we have proved that
(3.6) E(U(z)U(y)) > E(n(z)n(y)),

for any —1 <z,y < 1.
In view of (3.5) and (3.6), we can apply Slepian’s lemma (see [19]), to see that for any

non-negative Borel function f,
P(n(@) < f(a), |al<1)
<P(U@) < fz), || <1)

- IP( Wi(t) < F(EY D), Wya(t) < 2f (=t @Dy, o<t < 1),

where we have written Wy »(t) L w, (t) + /3 Wy(t) for brevity.
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Taking f(z) = c3 (14 ¢2) fo(x) L fo(x), and going back to (3.4),

P(Ey)

IN

3IP’<W1(t) < cq fo(t @) Wi o(t) < 2¢4 fo(—tY(@7D), 0<t< 1)

3P(W1(t) <eah Wia(t) < 2es), 0<t <X

IN

Wi(s) <ecqs|logd|, A<s< 1)
(3.7) < 3(P(Es) + P(E7) P(Es)),

=9

Ee {Wl()\) < —Vllog )| },

E; déf{Wl(t)<C4/\, Wl’g(t)<2C4A, OStS)\},
def

By & {Wl(s)—Wl(A)<C4s\1og,\|+\/X\1og,\|, )\<s§1}.

It remains to estimate P(E;) for ¢ = 6, 7, 8. By the well-known Mill’s ratio for Gaussian
tails (see for example Shorack and Wellner [18, p. 850]),

1 1
3.8 P(Eg) < ————— exp( —= |logA|?).
(38) (Be) < oy o0 ( =3 g )

To estimate P(Fy), observe that by scaling,

P(E;) = IF’(Wl(t) < ea VN, Wilt) + V3Wa(t) < 24 VA, 0<t< 1)

—P((W1(),Wa(t) €D, 0<t<1),

where D & {(z,9) : z < cavVX, z4+V3y < 2c4vVA}. In words, the event on the right-
hand side says that, starting from (0, 0), the planar Brownian motion (W7, W3) stays in D
during [0,1]. A geometric observation (using translation and rotation) reveals that

P(E7) = P( starting from (v/c5 A, 0), the angular part of
planar Brownian motion lies in (—n/3,7/3) during [0, 1] ),

with 5 & 4(cy)?/3. Let Z denote a planar Brownian motion starting from (1,0), with

angular part 6 (see Section 2.4). By scaling,

P(E,) = IP( sup  |6(s)| < z )
0<s<1/(cs \) 3
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Recall from (2.4) that 6(s) = B(H(s)), where H is a continuous clock, independent of the
one-dimensional Brownian motion B. It is well-known (see for example Csérg6 and Révész
[3, p. 43]) that for @ > 0 and = > 0,

IP( sup |B(s) |<x):%i

2,2
exp(_W) <2 exp(-22),
0<s<a 8x ™

Hence, by conditioning on H and then using (2.6),

P(Br) =P sup  |B(w) <7 )
0<u<H(1/(cs\)) 3

< z[ow(-5 ()
I35 (R(t)/t)
ZEE[7&Rwﬁ>L

™

where t < 1 /(cs A). To compute the expectation on the right hand side, we use some
techniques which derive their inspiration from It6 and McKean [9, pp. 270-271]. Recall
that R as a two-dimensional Bessel process is Markovian, whose semi-group is known, see
Revuz and Yor [17, Chap. XIJ:

P(R(t) € dy) = %exp(—1 —’2_ty2) IO( ) dy, y > 0.

On the other hand, according to Gradshteyn and Ryzhik [8, p. 967], for = > 0,

2 xcoshz —sinhz
Lyalw) =/~ 2

< cq ($3/2 Tjocact) + 12 (o1 )

Consequently (recalling that ¢t = 1/(c5 A)),

2

t
Y\5/2 Yy
P(E7) <c7 (/0 (;) exp(—Q—t
(3.9) < cg A¥/4

2

yars [ () oo} - ) )

It remains to estimate P(Eg). By the stationarity of Brownian increments,

P(Eg) :IP’(Wl(t) < s (t+X) |log Al + VA |logd|, 0<t< 1—,\)

< IF’(Wl(t) <ecat|logh + (ca+ 1)V |log A, 0<t< 1/2).



For any a > 0 and b > 0,

(3.10) P(Wl(s) <a+bs, s> 0) =1-—e 2

(see for example Karatzas and Shreve [10, p. 197]). It follows that
IP’(Wl(t) —Wi(1/2) < (t—1/2) |log\| +1, t> 1/2) > co.

Therefore, by the independence of Brownian increments,
P(Es) < é]P’(Wl(t) <cgt|logA| + (ca+ 1)V A |logh|, 0<t<1/2,
Wi(t) < (t—1/2)|log Al + 1 + %4 llog A| + (ca + )VX | log A|, ¢ > 1/2)
< é]P’(Wl(t) < (ea+ 1)t log Al + (s + VA log A, ¢>0)
(3.11) < eV |log AP,

the last inequality following from (3.10). Combining (3.7)(3.9) and (3.11) completes the
proof of Theorem 3.1. ad

4. Proof of Theorem 1.1

Before starting the proof of Theorem 1.1, we recall some notation which was already
used in the previous sections: X is a symmetric stable process of index a € (1, 2], whose
local time is L® The inverse local time at 0 is denoted by 7(r). Also, n will denote the

FBM(a — 1) introduced in (2.3). As before, we assume without loss of generality that ¢
satisfies Theorem B (see Section 2.2).

For brevity, we write

L} € sup Ly, t>0.
T€ER

The proof of Theorem 1.1 is divided into several small steps.

Lemma 4.1. For any b > 4,

1 b
(4.1) lim (log ) < ) 7") = 00, a.s.

7 —00 T

Proof. Since b > 4, it is possible to find a constant 0 < a < 1/5 such that b > 4/(5a).

Define the sequence r, = exp(n®). By scaling,

]P’(L:(Tn) < Tpa1+ Tlnj—i—l) — P(L:(l) < Tn41 + Tn4+1 )

(log ry,)? T, rn(logry,)?
N C11 C12
<P(Ligy <1+ o+ 22,



Applying Theorem 3.1 to A = ¢11 n—(1=a) 4 ¢ op—ab yields that

* Tn41 1 1 2
H”<LT(M> < Tng1 T m) < i3 ( 5—a)/d T n5ab/4) (logn)%,

which is summable for n (recalling that a < 1/5 and that b > 4/(5a)). An application of

the Borel-Cantelli lemma, together with the monotonicity, gives that

.. logr)®
ler_l)})Iolf ( . ) ( :(T) —T) >1, a.s.
Since b > 4 is arbitrary, this completes the proof of Lemma 4.1. O

Lemma 4.2. For0 < A< 1 and h > 0,

(4.2) IP’( |21|151)th(1) >1+ )\) < c1a exp(—gh)\TQ_l).

Proof. Let n be an FBM(« — 1), independent of the underlying stable process X. Clearly,

1
IF’< |2Tl§ph L7y > 1+ )\) < IF’( |2}1§ph(Lf(1) +3 n*(z)) > 1+ )\).

By Theorem B (see Section 2.2), we have

IP’( |:1|1§phLT(1) > 14 )\) < IP’( 3 |21|1Sph(n(a?) +v2) > 1+ )\)

|z|<h 2
A
=P 10> 577

This yields (4.2) by means of a tail estimate for general Gaussian processes due to Marcus
and Shepp [15]: if {Y(t); t € T} is a bounded real-valued centered Gaussian process, then

2

xr
logP(sup Y (1) > z) ~ =2 . — 00,
og 216111:;| )] >z 202 T — 00

Q.

with o2 of sup,er E(Y2(2)). O

Lemma 4.3. For any M > 0, there exists ¢;5 > 0 and h, € (0,1) such that, whenever
0 < h < hy and A > M h(e=1/2

(4.3) P( sup |L7 ) — 1] < )\) > C15.
|z|<h



Proof. Without loss of generality, we can assume that M < 1/2. Let  be an FBM(a—1),
independent of X. Clearly,

P( sup [L2) — 1/ < A)
jal <h

> IP’( sup L7y — 1[ <A, sup n*(z) < )\)
|| <h || <h

1 A
> IP’( sup L7y — 1+ 5772(33)\ < =, sup n?(z) < )\)

|z|<h 27 1z<n
T 1 2 A 2
> P( sup L2y = 1+ S n*(@)| < 5 ) = P( sup n(z) > ))
|z|<h 2 2 |z|<h
ef
(4.4) E P(Ey) — P(Eo),

with obvious notation. By (2.3),

(45) = (Ci16-

On the other hand,

M
2

< sup (") 2 Gy )

M

< 2(g) > ——

= P(@‘g’l" (z) 2 hgka—n/z)

(46) = C17.

We can choose h, sufficiently small such that c;7 < ¢16. The lemma follows by jointly
considering (4.4), (4.5) and (4.6). O



Lemma 4.4. It is possible to choose a sufficiently small h, € (0,1) such that, for all
0< h < hy and X > 0,

)\2
4. P L2, —1)>X) < ——t ).
(4.7) (1217{22 |21|1Sph( )~ 1) > )_cls eXp( 243ha_1)

Proof. We assume without loss of generality that A > h{®=1/2 otherwise (4.7) holds
trivially. Define,

def T 0
Yi(r) = sup ( L7y — Lo ),
w(r) |m|§h( (r) <>)
T inf{er: Y (1) >)\},
A3-T

lo|<(3-T)1/ (e~

Since # Y3, (r) is right-continuous, we have Y, (T) > XA when T < oo. By the triangle
inequality, on the event Ey; (thus 1 < T < 2),

sup (Lf(g) - Lﬂ(g)) > Yu(T) = sup | L7y — LIy = (3 =T)

ja|<h jo|<h
AB—T)
) A S
> 3
by
> —.
=3

In other words, E1; C {Y4(3) > A/3}. Let (F¢)s>0 be the natural filtration of X. Observe
that on {T < oo}, T = LS(T) is measurable with respect to F,(ry; and so is the event
{T < 2}. Therefore, given T' < 2, Ey; is independent of F, (7). By the strong Markov and

scaling properties,

A
P(T < 2) IP’( sup Loy — 1] < g) — P(En)

< P(Yn(3) > A/3)

P
A
=P sup LZy>1+ —),
<|x|Sh/31/(a_1) (1) 9

which, in view of Lemmas 4.2 and 4.3, yields: for small A and A > h(@=1)/2

/\2
< < - .
P(T'<2) < e eXp( 243 ha—l)



Since {sup;<,<osuP|g<pn(Lyy — 1) > A} C {T < 2}, this completes the proof of the

lemma. O
Lemma 4.5. For any p > 0 and b > 0 such that (o — 1)p > 2b, we have

1 b
(4.8) lim (log ) sup (Lf(r) —r) =0, a.s.

roee T |z|<rl/(a=1)/(logr)r

Proof. Define r,, = 2™. By scaling and Lemma 4.4, for all sufficiently large n,

IF’( sup sup (Lf(r) —r) > (Tin)

rn<r<rnti |$|S7°,11{i_(f_1)/(10g7°n)” 10g Tn)b
1
:IP’( sup sup LI —T >7)
1<r<2 |x|£21/(al)/(logrn)ﬂ( ( ) ) (]'Og rn)b
(1Og,r,n)(a—1),u—2b
< exs exp - )
= C18 €Xp 486

which sums. Lemma 4.5 follows from an immediate application of the Borel-Cantelli

lemma. O

Proof of Theorem 1.1. Fix v > 9/(a—1). It is possible to choose b > 4 and € > 0 such

that
b<a—1( 1 s)
2 T a1 ol

Since 7 +— 7(r) is a stable subordinator of index (a — 1)/, some well-known theorems

(see for example, Fristedt [7, Theorems 11.2 and 11.7]) confirm that almost surely for all

sufficiently large r,

(4.9) (r) < 1o/ @V (log r)o/ (@—Dte,
(410) T(’l“) > T(l—s)a/(a—l)‘

Let t be very large, say t € [t(r—), 7(r)]. By (4.1),

* * r
(411) Lt Z LT(,,._) >7r+4 m

On the other hand, by (4.9) and (4.10), and writing ¢y o (a—=1)/(1=¢e)a),

sup Ly < sup L7
|z <t/ /(log )7 |lz|<(r(r))!/ >/ (log T(r))"
< sup L7y

" zl<eso (r(r))/ @/ (log )

< sup 2 -
|z|<ego r1/(a=1) /(logr)Y—1/(a=1)~€/a



Applying Lemma 4.5 gives that

,
sup Li <r+ ——,
2| <t1/ ) (log £)7 (logr)

which, in view of (4.11), implies that [V (t)| > t'/*/(logt)?, where V (t) is as before the
most visited site (see (1.2)). As a consequence, for v > 9/(a — 1),

1 Y
liminf (08%)

t—o00 t1/a

V() >1, a.s.

This completes the proof of Theorem 1.1. O
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